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Abstract

Purpose – The main aim of this paper is to utilize the different forms of functions for the numerical
solution of the two-dimensional (2-D) inverse heat conduction problem with temperature-dependent
thermo-physical properties (TDTPs).

Design/methodology/approach – The proposed numerical technique is based on the modified
elitist genetic algorithm (MEGA) combined with finite different method (FDM) to simultaneously
estimate temperature-dependent thermal conductivity and heat capacity. In this paper, simulated
(noisy and filtered) temperatures are used instead of experimental data. The estimated temperatures
are obtained from the direct numerical solution (FDM) of the 2-D conductive model by using an
estimate for the unknown TDTPs and MEGA is used to minimize a least squares objective function
containing estimated and simulated (noisy and filtered) temperatures.

Findings – The accuracy of the MEGA is assessed by comparing the estimated and the pre-selected
TDTPs. The results show that the measurement errors do not considerably affect the accuracy of the
estimates. In other words, the proposed method provides a practical and confident prediction in
simultaneously estimating the temperature-dependent heat capacity and thermal conductivity. From
the results, it is found that the RMS error between estimated and simulated temperatures is smaller
for linear simulation and also we found this form convenient for parameters estimations.

Research limitations/implications – Future approaches should find the optimal design of case
study and then apply the proposed method to achieve the best results.

Originality/value – Applications of the results presented in this paper can be of value in practical
applications in parameter estimation even with one sensor temperature history.

Keywords Heat conduction, Data analysis, Thermodynamic properties

Paper type Research paper

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0961-5539.htm

Nomenclature

C(T) Specific heat capacity

ci Individuals

cbest,i The ith gene of the first-ranked
individual

f(�) Fitness function

I Number of the time
readings

K(T) Thermal conductivity

Li Lower bounds of the ith gene of
individuals

L Width of slab

M Number of sensors

n Size of coded individuals or
unknown parameters

P Population

Pm Mutation probability

Pr Replacement probability

Pc Crossover probability

qc Constant heat flux

rc Compression factor

S(�) Least squares error

Texact Exact temperature

th Heating duration

tþh Non-dimensional heating duration
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tf Total measurement time

tþ Dimensionless temperature

Tmax Maximum of the exact
temperature

Ui Upper bounds of the ith gene of
individuals

~YY im Temperature histories

Greek symbols

� Average thermal diffusivity
� Estimated parameter vector

containing the unknown TDTPs
�j A gene
� Standard deviation of the temperature

measurements
" Random variable

1. Introduction
Inverse heat conduction problems have received much attention since they have been
widely used in practical engineering problems to estimate the thermal properties (Kim
et al., 2003, 2004) as well as the initial and boundary conditions (Raudensk�yy, 1993; Chen
et al., 1997; Kim and Lee, 2002; Ranjbar and Mirsadeghi, 2007; Martorano and
Capocchi, 2000). The aim of the present study is simultaneous estimation of
temperature-dependent thermal conductivity and heat capacity which are, in general,
dependent on the temperature. Inverse problems of estimating temperature-dependent
thermo-physical properties (TDTPs) have been generally solved by using the
conjugate gradient method with adjoint problem for parameter estimation or a
common gradient-based method such as Gaussian linearization and modified Box-
Kanemasu methods (Garcia, 1999; Imani et al., 2006). In case there is no prior
information about the functional form of unknown TDTPs or in the case of
simultaneously estimating correlated parameters, such techniques are very difficult to
apply because of their sensitivity to measurement errors (Imani et al., 2006).

Beck and A1-Araji (1978) applied the simple transient method to estimate the
specific heat, thermal diffusivity and contact conductance. In this work, the thermal
conductivity is assumed to be constant or a linear function of temperature. Chen and
Lin (1998) used a hybrid numerical algorithm of the Laplace transform technique and
the control-volume method to simultaneously estimate the temperature-dependent
thermal conductivity and heat capacity from temperature measurements inside the
material. But, the functional forms of the thermal conductivity and heat capacity were
unknown a priori. Huang and Ozisik (1991) applied a direct integration approach to
estimate linear TDTPs. Their algorithm is not very sensitive to the choice of initial
guesses, sensor location and experiment times, but needs curve-fitted measurements.
Kim (2001) used a direct method to estimate the temperature-dependent thermal
conductivity without internal measurements. He transformed the steady-state non-
linear heat conduction equation into the Laplace equation via the Kirchhoff
transformation. The thermal conductivity was modeled as a linear combination of
known functions with unknown coefficients, which were directly determined from the
imposed heat flux and measured temperatures at the boundary. Huang et al. (1995) and
Huang and Yan (1995) applied the conjugate gradient method to estimate the
temperature-dependent thermal conductivity k(T) and heat capacity c(T). At least two
thermocouples were used for estimating k(T) (Huang and Yan, 1995). Alifanov and
Mikhailov (1978) applied the conjugate gradient method to search for the thermal
conductivity. Tervola (1989) solved the problem through the Davidson-Fletcher-Powell
method. Scarpa et al. (1993) found their solution via the Monte Carlo technique and
covariance analysis. Such methods do not take into account measurement errors and
are limited to linear cases. Genetic algorithm (GA) is a robust, non-gradient algorithm
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that belongs to the field of evolutionary algorithms. Garcia (1999) developed an
excellent GA code to optimize the experiment design for estimation of TDTPs of
composite materials. Garcia used this code in order to estimate directional K and C
properties of composite. As his model was simple, he used analytical solution to find
the temperature field. Imani et al. (2006) defined a simple model (1-D) and used one
sensor to estimate simultaneously K and C based on TDTPs.

The aim of the present work is estimation of conductivity and heat capacity based
on GA. Present model is non-linear case and there is no analytical solution for this
model. In this study, six sensors are used and also the defined model is a practical and
two-dimensional (2-D) one with appropriate boundary conditions. Finite different
method (FDM) is used to calculate the temperature field. Moreover, a comparison
between different estimation forms (constant, linear and parabolic function) is
presented.

2. Direct problem
Consider a 2-D homogeneous slab as shown in Figure 1 used in engineering application
(Kim et al., 2003; Venkatesan et al., 2001). The thermal conductivity K(T) and specific
heat capacity C(T) are unknown. The boundary surface at x ¼ 0 is subjected to a
prescribed constant heat flux qc during particular time as th. The other boundary
surfaces are kept insulated. The governing differential equation of this problem can be
expressed as:

@

@x
KðTÞ @T

@x

� �
þ @

@y
KðTÞ @T

@y

� �
¼ �CðTÞ @T

@t
for

0 < x < L
0 < y < 2L

���� and jt > 0

ð2:1Þ

and boundary conditions are in the following forms:

KðTÞ@T

@x

����
x¼0

¼ f ðt; yÞ; f ðt; yÞ ¼ qc; ðL < y < 2LÞ ^ ðt < thÞ
f ðt; yÞ ¼ 0; ð0 < y < LÞ _ ðt > thÞ

���� ð2.2aÞ

Figure 1.
2-D conductive model
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8>>>>>>><
>>>>>>>:

; t > 0 ð2.2bÞ

where th is heating duration and constant heat flux qc ¼ 120 kW m�2 is applied at the
left boundary. The boundary conditions have also been shown in Figure 1 and the
initial condition is:

Tðx; y; 0Þ ¼ Tinit ð2:3Þ

Dimensionless temperature, time and heating duration are defined as:

Tþðx; y; tÞ ¼ Tðx; y; tÞ
qcL=K

; tþ ¼ �t

L2
; tþh ¼

th

tf

ð2:4Þ

where � is the average thermal diffusivity of the sample, th is the heating duration and
tf is the total measurement time. In this study, Lx ¼ 0.1 m, K ¼ 14.1 W m�1 K�1,
Cp ¼ 448 J kg�1 K�1, � ¼ 6,288.25 kg m�3 and Tinit ¼ 23�C are considered and used in
order to define the dimensionless variables.

For the direct heat conduction problem, the temperature distribution in the slab as a
function of space and time can be numerically (FDM) determined (Gerald and
Wheatley, 1997) provided that all TDTPs of the slab are given.

3. Measurement simulation
In order to simulate the experiment, the temperature histories at some sensor locations
are usually measured in the slab. We use the temperature histories taken from the
sensors and denoted them by ~YY im (ti, Sensorm) � ~YY im, i ¼ 1 to I and m ¼ 1 to M,
where I denotes the number of the time readings and M is the number of sensors. We
used six sensors in this study (I ¼ 6). The sensor locations have been shown in Figure
1 and also all the exact position of each sensor is clear in Table I. The measured
temperature data, ~YY im, used in the present inverse analysis can be determined from the
exact temperature solution of the direct heat conduction problem with the given
TDTPs, Texact. Owing to experimental uncertainty, ~YY im contains the measurement
error. Thus, Texact should be modified by Gaussian additive noise in order to simulate
experimental measurements. With respect to the eight statistical assumptions in Beck

Table I.
X- and Y-positions for
sensors

Sensor number X-position Y-position

1 0 2L-2L/3
2 0 2L-L/3
3 L/2 L-L/2
4 L/2 L
5 L/2 2L-L/2
6 L/2 2L
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et al. (1985) and Ozisik and Orlande (2000), ~YY im can be expressed as:

~YY im ¼ Texactðti; SensormÞ þ "� ð3:1Þ

where � is the standard deviation of the temperature measurements and " is a random
variable ranging from �2.576 to 2.576 for normally distributed errors with zero mean
and 99 per cent confidence bounds. The product of "� represents the temperature
measurement error.

4. Inverse analysis
Inverse parameter estimation methods are based on the minimization of an objective
function containing both estimated and measured temperatures (Beck et al., 1985; Beck
and Arnold, 1977). Ordinary least squares (OLS) estimator is by far the most frequently
used method for the estimation of TDTPs as no prior knowledge is needed (Beck and
Arnold, 1977). OLS estimator was considered in this research. The associated objective
function, the least squares error, S, is expressed by (Ozisik and Orlande, 2000):

Sð�Þ ¼
XM
m¼1

XI

i¼1

½~YYim � Timð�Þ�2 ð4:1Þ

where � is the estimated parameter vector containing the unknown TDTPs; ~YY im is the
ith observation from the mth sensor; M and I are the number of sensors and
observations, respectively. Tim(�) is the calculated temperature from the mathematical
model governing (direct solution) the heat transfer phenomena with respect to the
estimated parameter vector.

In using Equation (4.1), the thermal properties are found by minimizing the sum of
squared differences between the measured and calculated data. The minimization of
Equation (4.1) could conceivably be performed by any optimization technique.
However, parameter estimation has generally been performed with only a few
methods. The use of one method over another is often specific to a certain field of study.
The approach investigated in the present work involves the use of a robust non-
gradient method, namely the GA method, in the minimization procedure. The
motivation for using GAs was to circumvent difficulties of non-convergence in cases
when the parameters are correlated or nearly so.

5. Genetic algorithm
GAs were developed by Holland (Goldberg, 1989). The common feature of these
algorithms is to simulate the search process of natural evolution and take advantage of
the Darwinian survival-of-the-fittest principle. In short, evolutionary algorithms start
with an arbitrarily initialized population of coded individuals with size ns, in which a
population P consists of individuals, ci with i ¼ 1 to ns:

P ¼ fc1; c2; . . . ; cnsg ð5:1Þ

The population evolves toward increasingly better regions of the search space by
means of both random and probabilistic methods (or deterministic methods in some
algorithms). An individual is a possible solution of an optimization problem with the
objective function S(�), which is a scalar-valued function of an n-dimensional vector �.
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The vector � consists of n unknown parameters �j, with j ¼ 1 to n, which represent a
point in real space Rn. The variable �j is called a gene. Thus, an individual ci consists of
n genes:

ci ¼ fci1; ci2; . . . ; cing ð5:2Þ

The goodness of each individual is evaluated by a fitness function that is defined from
the objective function of the optimization problem. To define a fitness function for
minimization problems such as Equation (4.1), it is necessary to change the objective
function, because GA works according to the principle of the maximization of the
fitness function, and so the fitness function of Equation (4.1) is defined as:

f ð�Þ ¼ 1

0:001þ
ffiffiffiffiffiffiffiffiffiffi
Sð�Þ

p ð5:3Þ

The square root function is included to moderate the selection pressure of the GA, and
0.001 is added arbitrarily to limit the maximum of the fitness function and avoid the
infinity.

The basic operators used in GAs consist of selection (the selection of parents for
breeding), crossover (the exchange of parental genes to create children) and mutation
(the changing of individual genes) (Michalewicz, 1996). The present mechanism to
select parents is the combination of roulette wheel selection and tournament selection,
where each individual in the current population has a roulette wheel slot sized in
proportion to its fitness. An arithmetic crossover (Doyle, 1995) is applied to each pair of
the mating pool with a crossover probability, Pc. A mutation operator modifies gene
values of individuals according to a mutation probability, Pm. In addition, following the
Darwinian Theory, an elitism operator (the protection of best individuals), e.g.
generational replacement with probability Pr is used, in which parents are replaced
with children, while the ns � (1 � Pr) best parents are kept (Goldberg, 1989).

Goldberg (1989) developed the basic elitist genetic algorithm (BEGA). In this work,
BEGA is modified with some additional operators such as an elite initial population
and a domain compression operator (Imani et al., 2006). The modified elitist genetic
algorithm (MEGA) started by a successive random search for elite individuals in which
only the first-ranked individual of each initial population is kept for an elite initial
population. A compression factor rc is then applied in some generations to reduce the
parameters’ search space as follows:

Uijnew ¼ ð1� rcÞcbest;i þ rcUijold

Lijnew ¼ ð1� rcÞcbest;i þ rcLijold

ð5:4Þ

where Ui and Li are upper and lower bounds of the ith gene of individuals, respectively.
And cbest,i is the ith gene of the first-ranked individual in the generation in which the
domain compression operator is applied.

There are many advantages of applying GAs to estimation problems. GAs are
easily programmed. Their major strength is that they are derivative-free calculations
and, as shown in this work, they do not need any initial guesses. Design of robust GAs
is highly application specific and their performance is difficult to predict. Another
significant drawback is the high CPU cost. A mathematical function called f6 (Ranjbar
and Mirsadeghi, 2007; Imani et al., 2006; Davis, 1991; Schaffer et al., 1989) was
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optimized to illustrate the performance of the MEGA. The expression of this function
is:

f 6ðx; yÞ ¼ 0:5�
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i2

�0:5

½1:0þ 0:01� ðx2 þ y2Þ�2
ð5:5Þ

The goal is to optimize f6, e.g. to find values of x and y that produce the greatest
possible value for f6. This function has some interesting features such as a single
global optimum, which is f6(x ¼ 0, y ¼ 0) ¼ 1, strong oscillations, and a tiny fraction
of the total area for the global regions. Figure 2 shows a typical increase of both the
fitness (function f6) of the best individual and the average fitness of the population
obtained from MEGA for different runs. Accuracy of the present algorithm has been
shown in Table II. Present algorithm successfully finds the global optimum just with
100 generations whereby x and y errors are from�4 to�8 order.

6. Methodology
A flowchart of the proposed method for TDTPs estimation is shown in Figure 3. A
simulated experiment was performed with adding Gaussian white noise to the exact
solution of the direct conductive model. To simulate the experiment, the pre-selected
TDTPs are assumed for three cases of dependency as:

Figure 2.
Average (a) and the best

fitness (b) evolution
of function f6 for

different runs

Table II.
Best x, y, fitness and
average evolution of

function f6 for different
runs with genetic

parameters

Run Best x Best y Best f6 fitness Average fitness

1 �3.878E-06 3.628E-06 0.99999999997 0.9868
2 1.421E-06 �6.981E-07 1.00000000000 0.9834
3 �1.885E-04 �2.571E-05 0.99999996377 0.9727
4 5.842E-05 �6.015E-05 0.99999999296 0.9847
5 4.620E-05 �2.734E-06 0.99999999786 0.9841
6 �5.359E-07 4.348E-08 1.00000000000 0.9729

Notes: ns ¼ 100, ng ¼ 100, Pc ¼ 0.99, Pm ¼ 0.1, Pr ¼ 0.95 and rc ¼ 0.95
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KðTÞ ¼ k1 ¼ 14:1

CðTÞ ¼ c1 ¼ 448
ð6:1Þ

KðTÞ ¼ k1 þ k2T ¼ 14:1þ 0.0166T

CðTÞ ¼ c1 þ c2T ¼ 448þ 0.291T
ð6:2Þ

Figure 3.
Flowchart of the proposed
method
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KðTÞ ¼ k1 þ k2T þ k3T
2 ¼ 14:1þ 0.0200T � 0:000021T2

CðTÞ ¼ c1 þ c2T þ c3T2 ¼ 448þ 0.5455T � 0:0005597T2
ð6:3Þ

A total of 500 simulated measurements containing additive, uncorrelated and normally
distributed errors with zero mean and constant standard deviation of � ¼ 0.01Tmax

were assumed available for the estimation procedure, where Tmax is the maximum of
the exact temperature in the simulated experiment. Measurement interval is chosen as
4 s. regarding boundary conditions and pre-selected TDTPs (Equations (6.1)-(6.3)),
Tmax is calculated as 403 �C.

Exact simulated temperature measurements for all sensors locations are presented
in Figure 4(a) for heating duration th

þ ¼ 0.3. Actual measured data could be used for
the inverse analysis as illustrated in Figure 3. A three-point moving average filter is
applied to reduce measurement errors. After completion of data filtering, these
measurements are used in MEGA to estimate the unknown TDTPs. Filtered
temperatures for sensor Nos. 1 and 6 are compared with noisy and exact measurements
in Figure 4(b). It is clear in Figure 4(b) that the data filtering reduces the noises at
temperature history; this point is obviously shown in Figure 4(c).

7. Results and discussion
Genetic parameters could affect the convergence and performance of the MEGA. There
are unfortunately few heuristics to guide a user in the selection of appropriate
operators and genetic parameter settings for a particular problem. What can be
grasped from the literature is that good GA performance requires the choice of a
moderate population size, a high crossover probability and a low mutation probability
(Garcia, 1999). So, genetic parameters in the current research are chosen as: ns ¼ 100;
ng ¼ 1,000; Pc ¼ 0.99; Pm ¼ 0.1; Pr ¼ 0.95; rc ¼ 0.9, 0.95, 0.98 when n ¼ 2, 4, 6,
respectively. The valid ranges for the unknown parameters are specified to begin the
MEGA search, e.g. c 2 (0-1,000) and k 2 (0-100). The ranges of the second and third
parameters in Equations (6.1)-(6.3) are obtained from the functional form of the
unknown TDTPs considering the above valid ranges.

In this work, it is assumed that the form of the estimated TDTPs is priori unknown
as in most real-world engineering applications. One may choose different forms of the
unknown estimated TDTPs and calculate the RMS error between simulated and
estimated temperatures to find minimum RMS error (maximum fitness function). e.g. in
order to find linear form of TDTPs, the problem is to find the best combination of
parameters (k1, k2, c1, c2) to achieve the maximum value of fitness function (minimum of
RMS); therefore GA finds the best combination of parameters as � vector (� � [k1, k2,
c1, c2]) to gain the f(�) maximum.

The inverse estimation of TDTPs is first performed by assuming exact
measurements. Then, analysis is repeated for the noisy measurements with
� ¼ 0.01Tmax for constant, linear and parabolic TDTPs. As randomness plays an
important role in each run of the MEGA (two runs with different random seeds will
generally produce different output). Figure 5 shows the differences between exact
(� ¼ 0) and noisy (� ¼ 0.01Tmax) measurements regarding the fitness function.
Fitness functions for both cases are shown in the figures when one of the parameters
changes around the pre-selected value of the parameter (e.g. �;1 2 k1 � 0:05� k1,
Figure 5(a)) and the other parameters hold exactly the pre-selected value from the
parabolic estimation (Equation (6.3)) (e.g. �i ¼ ki or ci). Actually, �1 stays on the x-axis
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Figure 4.
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and vary from �1 ¼ (1 � 0.05) � k1 to �1 ¼ (1 þ 0.05) � k1 and it is the difference
between the cases in Figure 5 and the best fitness sit on the y-axis. In order to make it
clear, it should be mentioned that �2 � c1 ± 0.05 � c1, �3 � k2 ± 0.05 � k2,
�4 � c2 ± 0.05 � c2, �5 � k3 ± 0.05 � k3 and �6 � c3 ± 0.05 � c3 correspond
Figures 5(b), (c), (d), (e) and (f) respectively. Moreover, each figure has one solid
and three dashed-dot lines. The solid one corresponds to the � ¼ 0 case, while the

Figure 5.
Comparison of fitness

functions for � ¼ 0 and
� ¼ 0.01Tmax for

conductivity (�1,3,5 or
k1,2,3) and heat capacity

(�2,4,6 or c1,2,3) parameters
for different runs
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dashed-dot lines are from different runs (random temperature error measurements)
with � ¼ 0:01Tmax. As demonstrated in the legend the solid line corresponds to the left
hand y-axis and the other dashed-dot lines correspond to the right hand y-axis.

Generally speaking, for the exact measurements case, fitness functions reach the
maximum value (1,000) as a result of negligible error between the exact measurements
and direct solution. But for the noisy measurements, fitness functions do not exceed 6.2
due to noises at simulated temperature. Another point came from Figure 5 is that the
optimum parameter to achieve the maximum fitness function value, does not fit on the
pre-selected value and the optimum point changes a little in different runs due to noisy
random temperature. This point is obvious in Figures 5(c), (d) and (f). The curves slip
and differential range of fitness function show the sensitivity of each parameter as it is
clear that the �6 (or c3) plays the least role in fitness function (Figure 5(f)).

Based on exact measurements three different runs are presented in Table III. We have
started with exact simulated measurements and tried to find the best parameters with the
same function used in simulation; two (� � [k1, c1]), four (� � [k1, k2, c1, c2]) and six
(� � [k1, k2, k3, c1, c2, c3]) parameters searching for constant, linear and parabolic simulation,
respectively. The best and average fitness functions for the runs listed in Table III are also
shown in Figures 6(a), (c) and (e). In the exact measurements case, as it mentioned, due to
negligible error between the exact measurements and direct solution, we can access to value
1,000 of fitness function. It is clear in Figure 6(a) that in two parameters searching (constant
simulation), the maximum value of fitness has been achieved in about the 60th generation,
and this range is 700 for four parameters searching. For the six parameters case, the present
algorithm could not meet the maximum fitness function (1,000) by 1,000 generations due to
larger compression factor than the others (rc ¼ 0.99 when n ¼ 6).

The results that are obtained from the exact measurements (� ¼ 0) in Table III show
an excellent agreement between estimates and pre-selected TDTPs. As we can see, the
RMS error between simulated and estimated temperatures is very small even for
parabolic case (equal to 1.E-16 to 1.E-5). The details of these data are available in Table
III for different runs. For noisy measurement, five different runs have been done and the
results for linear simulation and estimation are shown in Table IV for instance. The
good agreement has been observed between the estimation and pre-selected parameter.

The same procedure has been done for other simulation and estimation function types
and the estimated parameters and RMS errors have been shown in Table V. The best and
average fitness functions for each type of simulation or estimation function have been
shown in Figures 6(b), (d) and (f). The constant estimation type was performed with
constant, linear and parabolic simulation function and average and the best fitness
function have been shown in Figure 6(b). The same has been done for linear and parabolic
estimation and are shown in Figures 6(d) and (f), respectively. The mean results for all
kind of simulation and estimation type for noisy measurement are listed in Table V.

Among the results (Figures 6(b), (d) and (f)), RMS errors yield a minimum value for
linear type of simulation for all simulation function forms. Constant simulation yield
the maximum value of RMS error, no matter which type were used for estimation. For
the same simulation, the constant estimation has the worse RMS error and parabolic
estimation have given us the better RMS than the linear and constant; but there is a
very small difference between the linear and parabolic forms and regarding the CPU
cost, we recommend the linear estimation (linear and parabolic forms need four and six
parameters searching, respectively). Finally, the error comparison vs the time has been
shown in Figure 7 for sensor Nos 2 and 3. Based on order of errors, excellent agreement
has been achieved.
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Table III.
Best fitness and

parameters with the
same type of simulation

and searching parameter
for different runs based
on exact measurements

(� ¼ 0) which are shown
in Figures 6(a), (c) and (e)
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Figure 6.
Best and average fitness
functions based on
exact measurements
(left, � ¼ 0) and noisy
measurement
(right, � ¼ 0.01Tmax)
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8. Conclusion
An approach has been investigated to simultaneously estimate the temperature-
dependent heat capacity and thermal conductivity using an inverse heat conduction
method based on MEGA. Three cases of dependency for TDTPs have been investigated

Figure 7.
Error comparison

between estimated and
simulated/exact

temperatures with
� ¼ 0.01Tmax

Table V.
Estimated parameters

based on noisy
measurements

Inverse analysis
Measurements
Simulation Type k1 k2 k3 c1 c2 c3

RMS
error

Constant Constant 14.1458 – – 447.5618 – – 0.039402
Linear 14.0839 0.0001 – 446.4861 0.009651 – 0.036753
Parabolic 13.9420 0.0017 �3.088E-06 445.9544 0.003864 �5.059E-05 0.037696

Linear Constant 14.1624 – – 447.9989 – – 0.023509
Linear 14.1599 0.016472 – 448.587 0.29294 – 0.022584
Parabolic 13.9326 0.020037 �9.098E-06 441.4876 0.402980 �3.377E-04 0.022487

Parabolic Constant 14.1293 – – 447.8212 – – 0.024443
Linear 14.1689 0.019888 – 448.3175 0.549968 – 0.023779
Parabolic 13.8521 0.022120 �2.490E-05 445.5987 0.508789 �3.727E-04 0.023637

Note: � ¼ 0.01Tmax

Table IV.
Best parameters with
linear simulation and

estimation parameter for
different runs based on

noisy measurements

Measurements
Inverse analysis

Run k1 k2 c1 c2 RMS error

Linear simulation
� ¼ 0.01Tmax

1 14.1473 0.016458 447.025 0.30963 2.171E-02
2 14.2425 0.016097 451.282 0.28509 2.228E-02
3 14.1544 0.016506 449.681 0.27904 2.259E-02
4 14.2156 0.016268 451.048 0.27968 2.289E-02
5 14.0397 0.017031 443.901 0.31127 2.344E-02

Mean 14.1599 0.016472 448.587 0.29294 2.258E-02
�0.1202 �0.0006 �4.6865 �0.0183 �0.0009

Note: � ¼ 0.01Tmax
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and the results have been shown. Measurements are taken from sensors. The results
show that the measurement errors do not considerably affect the accuracy of the
estimates. Linear simulation yielded to the minimum RMS error and also it is good choice
for estimation TDTPs. The proposed method provides a practical and confident
prediction in simultaneously estimating the temperature-dependent heat capacity and
thermal conductivity. This method is also applicable to other kinds of inverse heat
transfer problems such as estimation of the directional thermo-physical properties,
unknown heat flux estimation, inverse heat convection and radiation problems.
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